
Theoretical and Applied Genetics 43, 255 -  260 (1973) 
| by Springer-Verlag t 973 

Dynamics of Finite Populations 
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Summary. A time-homogeneous stochastic process was used to derive exact expressions for the ultimate probability 
of fixation or loss and the expected time to fixation or loss of an allele in a haploid population whose size is a Poisson 
random variable. The treatment included selection and multiple alleles. 

1. Introduction 

Genetic theories of finite populations have been 
developed dealing with the rate  and probabil i ty of 
fixation of an allele and with its t ime to fixation 
(Kimura  1957, 1970, Felsenstein t971, Watterson 
t959, Carr and Nassar 1970). The limiting assump- 
tion in these studies is tha t  of a constant population 
size. Ecological evidence shows tha t  some popula- 
tions vary  in size over t ime (Andrewartha and Birch, 
t954), hence in the s tudy of the dynamics of gene 
frequencies in finite populations it is desirable to for- 
mulate  models with variable population size. Karlin 
(1968) studied the rate of approach to homozygosi ty  
for a selectively neutral  gene in finite stochastic 
models of variable population size. Cook and Nassar 
(1972), using independent branching processes, stu- 
died the t ime to fixation and the probabil i ty of sur- 
vival of a selectively neutral  gene in a finite popula- 
tion with a Poisson progeny distribution. There have 
been previous studies of the survival of a gene using 
independent branching processes having a Poisson 
progeny distribution. However, all of these studies 
were limited to populations of infinite size (Fisher 
1930, Pollak t966, Ohta and Koj ima 1968, and others). 

In  this s tudy we investigate in a finite haploid 
population of variable size with a Poisson progeny 
distribution the t ime to fixation and the probabil i ty  
of survival of a gene under selection. 

2. The Model 

Consider a population of n o haploid individuals of 
which k 0 are of type A1 and n 0 - k  0 of type A s. 
Assume tha t  individuals reproduce independently of 
one another and generations discrete and tha t  each 
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individual has a progeny distribution tha t  is Poisson 
with parameter  c~ in type A 1 and fl in type A 2. With 
that ,  the 

P r  (an individual of type A 1 has n offspring) = 

n! ' n = 0 , 1 , 2  . . . . .  (2.1) 

P r  (an individual of type A, has n offspring) = 

__ e - ~  
n! , n = 0 ,  t , 2  . . . .  (2.2) 

for some ~ > 0, fl > 0. The distribution of the popu- 
lation size of type A 1 in the next  generation is the 
distribution of the sum of k 0 independent random 
variables each having the Poisson density (2.t). Also 
the distribution of the population size of type  A 2 is 
the distribution of the sum of (n o - -  k0) independent 
random variables each having the Poisson density 
(2.2). The joint distribution of the population size 
of types A~ and A 2 in the next generation is then the 
product  of the A 1 and A 2 distributions. 

The probabil i ty in the next generation of having 
k 1 individuals of type A 1 and (n~ - -  kl) individuals of 
type A s given k 0 and n o --  k 0 in the present generation 
is 

P r  (K~ = k 1, N 1 = n~lKo = ko ,No  = no) = 

_ e-ko~(k o a)k, e-Cno-k~ ((n o -- ko) fl).,-k~ (2.3) 
kl ! (n~ -- kl) ! 

The stochastic process as described has a set of ab- 
sorbing states (A) 

A = { ( X , N ) I X = 0 o r N ,  N = 0 , 1 , 2  . . . .  } 

and a set of transient states (7) 

T = { ( X ,  N)IO < X < N ,  X and N integers} . 

Assuming tha t  the above process is t ime-homoge- 
neous, the one step transition probabil i ty is represent- 
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ed as 

P((k, m), (i, j)) = e -~'-(m-~)fl (h a) i ((m -- k) fl)i-i 
i! (j -- i)! ' 

0 < k  < m ,  0 ~ i < ] .  (2.4) 

When a # f l  there is selection acting in terms of 
differential reproduction of the two types. 

3" Probabi l i ty  of  Be ing  in a Trans ient  State 

Let 

XX(k ,m)  = Z P ( ( k , m ) , ( i , ~ ) ) ;  (k,m) e T 

(~,j/~r / (3A) 
x~(k, m) = X P((k, m), (i, i)) XX(i, J) 

( i , j ) e T  

and 

X~(k, m) = ~F P((k,  m), (i, i)) X " - ' (  i, J); 
( i , j ) e T  

n > 2 and (k, m) e T 

Xn(k,  m) is the probability that,  starting from the 
transient state (k, m), the process remains in T for 
the next  n transitions. Substituting (2.4) into ()A) 
and using induction, we can show that  

X~(k, m) = t -- e -k . . . .  F- e -k~'-(m-k)~ -- e-('~-k)t~"; 

n = t,  2 . . . .  (3.2) 
where 

a x = ~ >  0 and fix = f l >  0 ] 

az a (t - e-~0 f12 = fl (t --  e-~,) ] (3.3) 
�9 �9 

~ ~ ( l - ~  .. . . . .  ) f l . = f l ( l - ~ - ~ - , ) .  

The sequences {a.} and {fl.} are decreasing sequences 
which have a limit of zero if 0 < a < t and 0 < fl 

1. The limits are finite (L~ > O, L~ > O) if a > I, 
fl > l. In the latter case L~ and La are the positive 
roots of L~ = c, (1 -- e-L~) and L a = fl (! -- e-Lfl) 
respectively as shown by Cook and Nassar, 1972. 
Considering the limits of {~,} and {fin} it is easy to 
see that  

l im X"(k,  m) = 0 for ~ and/or fl < 1 
n ~ o o  

= L  for a a n d f l >  1.  

In words, if the average number of progeny per in- 
dividual of either or both types is equal to or less 
than 1, then with probability I a type will be even- 
tually fixed or lost from the population. If the aver- 
age progeny number of an individual in both types 
is larger than 1, there is a positive probability that  
both types remain indefinitely in the population. 
The above remarks can also be deduced from stan- 
dard branching process theory. 

4. U l t imate  Probabi l i ty  of  Fixat ion or Loss  

In this section we inquire into the ultimate prob- 
ability that  a type is fixed or lost from a population. 

Let 
oo 

Dl(k, m) = Z P((k,  m), (i, J)) 
j=l 

O0 / . - - |  

D2(k, m) = • Z P((k, m), (i, J)) DX( i, J) (4.1) 
/ ' = 2  i = t  

oo i - t  
Dn(k, m) = Z Z P((k,  m), (i, J)) D"- ' ( i ,  J) 

/ = 2  i = 1  

where Dn(k, jm) is the probability that  the process 
is absorbed into the class D = {(n, n)[n = l,  2 . . . .  } 
in the nth transition given the initial transient state 
(k, m). 

Substituting (2.4) into (4.1) and using the induc- 
tion argument, we can show that  

Dn(k, m) = e-(m-k)~ --  e-k~,-(m-kl~,, + 

4- e--k~"--(m--k)fl"-t --  e--(m--k)~"-t ; n > t . (4.2) 

The ultimate probability of fixation is 
oo  

D(k, m) = z~ Dn( k, m) = I - -  e -k~-(m-k)~ 4- 
n = t  

O0 

4- ,~ ( e-k~-(m-k)~ . . . . .  e - ~ - I ~ - k l a ' )  (4.3) 
n = 2  

i f 0  < f l <  t or 

D(k, m) = r  - -  e -k~-(m-~)a 4 -  

+ X (e -k~'~-Im-~la'-~ - e -k~-I~-kla~) (4.4) 

i f f l >  1. 

The ultimate probability that  type A 1 is lost from 
the population is 

I - D(k, m) = C(k, m) 

where 

G =  {(0, n ) [ n = 0 , 1 , 2  . . . .  } .  

This includes the situation where loss is also due to 
population extinction. 

It  can be shown that  
oo 

G(k, m) = t + Z e-k ..... - - ( m - - k ) f l  . . . . .  e--ka,,--(m--k)fl,-, 
n=2  

(45) 
i f 0  < o ~ < 1  or 

o~ 

G(k, m) = e -kL~ 4- ~ e -k  ..... -(m-k)fl . . . . .  
n ~ 2  

- -  e -ka'-(rn-k)t3 .... (4.6) 

if a >  t. 
The probability of ultimate loss, excluding the case 

of population extinction, can be derived as follows: 
Let 

Cl(k, m) = ~ P((k,  m), (0, J)) (4.7) 
j = t  
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and 
00  ~ ' - - t  

o ( ~ ,  m) = Z Z P{ (~ ,  m) ,  (i ,  i ) )  C~-'{i, i) 
j = 2 / = 1  

again substi tut ing (2.4) into (4.7) we can show b y  
induction tha t  

Cn(k, m) = e -~ . . . .  e -~ . . . . .  e -ka'r(m-~)fl~ Jr- 

_{_ e - - l r  

the ul t imate probabil i ty  of loss, excluding extinction, 
is 

o~ 

C(k, m) = X C~( k, m) : t -- e -~'-(m-~)~ q- 

oo 

+ X e -~  . . . .  --{m-~)~,, __ e--~,,--{m--~}~,, (4.8) 

if 0 ( c *  <_ 1. If c~ ) t, e -~L~' replaces t in (4.8). 

6. r T y p e s  

The results of the previous sections can be extended 
to include a population with r types of individuals. 
The one step transition probabil i ty  is then 

P(q~, i~ . . . . .  i ,_, ,  m}, (i~,/'2 . . . . .  i , - , ,  q)) = 

= exp _ i~a~ - )~. 
k = t  

where 
r - - I  r - - t  

i,  = m - ,F, i , ;  i,  = q - Z i~ 

and 

c% - the average progeny number  per individual of 
type  k. 

5. E x p e c t e d  T i m e  to Fixat ion or Loss  

Let E(k, m) denote the expected t ime to absorption 
given tha t  the process began in the transient  state 
(k, m). Then 

E(k, m) = ~ n(G~(k, m) + O~(k, m)) (5.t) 

following the same argument  we presented previously 
(Cook and Nassar, 1972) we can show that  

oo 

E(k, m) : I + ~F t + e - k~- (m-k )~  -- e -k . . . .  
n ~ 2  

- e -{~-k)I~" �9 (5.2) 

The series in (5.2) diverges only when 0~ ~ I and 
f l ~  I ; otherwise it converges. E(k, m) is not defined 
for Ic~ ~ 1, fl > 1], the case where the probabil i ty  
of u l t imate  absorption is less than I. E(k, m) is 
finite where the probabil i ty  of ul t imate absorption 
of the stochastic process is t. We can also define 
E'(k, m) as the expected t ime to fixation or loss of an 
allele given tha t  the population does not go to extinc- 
tion. 

c o  

E'(k, m) = z~ n(C~( k, m) + D**(k, m)/(C(k, m) + 
n = !  

+ O{k, m ) ) ) .  (5.3)  

The expected t ime to loss of type A1, given that  loss 
OCCURS, is : 

o0  

EL(k, m) = Z n(C~( k, m))/G(k, m) (S.4) 
n - - |  

o r  

E'L(k, m) = ~ n(Cn(k, m))/C(k, m) (5.5) 

similarly, for fixation 
c o  

E~ = X n ( D ' ( k , m  )) /D(k,  m) (5.6) 

Ultimate Probability o/Absorption 

Let X"(il ,  i 2 . . . . .  i,_~, m) == probabil i ty  tha t  s tar t -  
ing from the transient s tate (i 1, iz . . . . .  i,-1, m) at 
least two types will still be present in the population 
in the next  n generations. The process is defined to 
be transient if at least two types are present in the 
population. Analogous to the previous presentation 
of Section 3, we can show tha t  

Xn(il, i~ . . . . .  i , _ , ,m)  = I - -  ~ ' lexp iko~k,~ + 
= k 

\ k ~ v  l 

where 

+ (r -- ,) exp (--kZ==likak,,) , (6.2) 

~.k,2 = ~ (t  - e - ~ ' ' )  

~k,~ = ~k (t - e - ~ , ~ - ' )  . 

(6.3) 

As expected, at least r -  I of the {ak} sequences 
must  be equal to zero in the limit if absorption is to 
occur with probabil i ty 1. This implies tha t  r -  l 
of the types must  have an average progeny number  
per individual (ak) equal to or less than one. 

Ultimate Probability o[ Fixation 

Let D~(i 1, i 2 . . . . .  i , - t ,  m) = the probabil i ty tha t  
the kth type (k -- I, 2 . . . . .  r) is fixed in the popu- 
lation at the nth generation or transition, given the 
initial transient s tate (i 1, i~ . . . . .  i,_j, m). 

Dk(i 1, i 2 . . . . .  i ,_,,  m) = ~ D~(il, i,~ . . . . .  i ,_,,  m) = 

---- the ul t imate probabil i ty  of fixation of type k. 
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Analogous to section 4 we can show tha t  

D~(il' i2 . . . . .  i ' - "  m) = exp [ - ~ . 

- t - e x p [ - - i ~ ~ 1 7 6  j=' (6.4) 

Under the present theory it is possible to define and 
compute several forms of 10ss of a gene. A gene, for 
example,  can be lost when all others are still segre- 
gating. I t  is only when the population is ul t imately 
monomorphic with probabil i ty one tha t  the ul t imate 
probabil i ty of loss can be computed as one minus the 
ul t imate probabil i ty  of fixation, (6.4). No other 
definitions of loss will be considered here. 

Other expressions analogous to those of Sections 4 
a n d  5 for r types in the population can be writ ten in 
terms of (6.2) and (6.4). For example,  the expected 
t ime until the population becomes monomorphic can 
be writ ten as 

oo 

t + Z X~(i~, i~ . . . . .  i~_,, m) .  
n = 2  

Other analogies are also straightforward. 

7. D i s c u s s i o n  

Fisher (t930) was the first to s tudy the probabil i ty  
of survival of an individual gene in a population of 
infinite size. Assuming a Poisson progeny distri- 
bution he calculated the probabil i ty  of survival at 
generation n and in the limit for a gene tha t  is neutral  
and with a t %  selective advantage.  In our formula- 
tion the probabil i ty of survival at generation n is 

Xn(k, m) + ~ D~(k, m) , (7.t) 
j=l 

where the first te rm represents the probabil i ty  at 
t ime n tha t  the gene is still segregating in the popu- 
lation and the second term the probabil i ty tha t  it 
is fixed. Our approach reduces to that  of Fisher 
when the population size is infinite. This is shown as 
follows: Taking the limit of (7.t) as m -+oo  one gets 

lira [Xn(k, m ) +  ~ D'(k, m)] = 1  - - e  - k ~ .  
m ~ o o  L #=1 

For a single mutan t  

Xn(l, oo) : t - -  e . . . .  t - -  e-~0 - e -  ..... ) = 

= I -- e -~x"-'(~,~176 (7.2) 

which is essentially Fisher 's  recursive relationship for 
the probabil i ty  of survival to generation n, The ulti- 

mate  probabil i ty of survival, X~176 oo), is 

- -  - - ,  ) /  lim Xn(l, oo) lira (1 - -  e ~x~ 'It oo) 

~ [ (7.3) 
X~(I ,  co) = t - -  e-~X~O ,~176 j 

An approximate  solution to equation (7.3) wlien 
a -  t is small and positive can be deduced from 
Bart le t t  (t966, page 43) as 

X~176 oo) ---~ I - -  e -2(~-l)/a' 

-- 2 (o~ -- l)/a for a Poisson (7.4) 

which is equal to 0.0197 when ~ - -  1.01 (Table 1). 
The ul t imate probabil i ty of survival of a single gene 
in a finite population is seen to be larger than tha t  
of a large population. The increase is due to an in. 
crease in the probabil i ty of fixation of the gene as 
a result of random genetic drift due to small popula- 
tion size. 

Kimura  and Ohta (t969) calculated tha t  the time 
to fixation (excluding loss) of a neutral  mutan t  gene 
in a diploid random mat ing population of constant 
size N,  is approximate ly  equal to 4 N,. They also 
reported on the time to loss (excluding fixation) for 
several population sizes. Although our results are 
strictly applicable to a haploid model, it is interesting 
to note tha t  the t ime to fixation or loss (from equa- 
tions 5.5 and 5.6) of a neutral  mutan t  gene in 
a haploid population of stable size (a ---- fl ----1) is 
approximate ly  the same as tha t  in a random mat ing 
diploid population whose number  of gametes (2 Ne) 
is equal to the mean (m) of the haploid population 
(Table 2). In all cases, however, results of the haploid 
case were slightly less than the corresponding results 
of the diploid case. The correspondence of the haploid 
and diploid results ceases when the haploid popula- 
tion is no longer stable in size. If  gene substitution 
occurs when the population is decreasing in size 
(a = fl = 0.95), then there is a decrease in the t ime 
to fixation or loss of the gene as compared to tha t  of 
the stable size. An increase in the t ime to fixation 
is observed, however, if the population is increasing 
in size during gene substitution (a = 1.0t, fl = t.0). 

Table I. The probability of survival of a mutant gene with 
a one percentselective advantage (a = 1.01, fl = |)  in a po- 

pulation of initial size loo and infinity 

Gene- Probability gene Probability gene Probability 
ration is segregating is fixed of survival 

m = 100 m = lO0 m = oo 

1 O.63578 0.0 O.6358 
3 0.38033 0.0 0.3803 
7 0.21749 0.0 0.2t75 

15 0.12169 0.92 X 10 -6 0.1217 
31 0.06854 0.19>( 10 -3 0.0687 
63 0.03889 0.24 • 10 -2 0.0409 

127 0.02125 0.007807 0.0271 
limit 0.0 0.02414 0.0197 
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Table 2. The expected time to fixation and to loss and the ultimate probability of fixation of a mutant gene 
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Parameter Population size Time to loss Time to Ultimate 
haploid diploid haploid diploid fixation prob. of 

fl a m 2 N (Kimura '69) fixation 

t 1 20 20 5.69 6.3 37.97 0.0488 
f 1 60 60 7.69 8.2 117.01 
t l 100 100 8.61 9.3 192.o4 
0.95 o.95 60 4.42 31.01 
0.95 0.95 20 3.78 16.66 0.0476 
0.95 o.96 20 3.84 17.42 0.0532 
0.95 t .0 20 3.97 21.23 0.0832 
0.8 0.81 20 2.45 7.93 0.0472 
0.8 0.85 20 2.54 8.36 0.0625 
I 1.of 2o 5.36 94.68 o.06 

Table 3. Comparison of theoretical (Poisson case) and Monte Carlo (negative 
binomial case) results for the time to fixation and to loss and for the probability 

of fixation of a neutral mutant gene in a population of initial size lo 

Probability Progeny distribution Time to fixation Time to loss of fixation 

a = f l = l  
Poisson t 8. t 9 4.54 0.1 
negative binomial 16.78 i 4.4 4.34 • 0.56 0.101 -t- 0.022 

a = 1.02, fl = 1 
Poisson 47.22 4.20 0.t 16 
negative binomial 32.57 ~ 8.59 4.18 + 0.44 0.t04 -I- 0.015 

When  the size of the popula t ion  is constant ,  it is 
known t h a t  the t i m e  to f ixat ion of a m u t a n t  gene 
decreases with an increase in its selective advantage .  
If  the popula t ion  is growing in size, however,  the 
t ime to f ixat ion is seen to increase with an increase in 
its selective advantage .  This is also t rue when the 
popula t ion  is growing in size for the first few gene- 
rat ions and then stabilizes (unpublished work). The  
results of Table  2 show also tha t  a m u t a n t  gene with 
a selective advan tage  has a higher u l t imate  probabi-  
l i ty of f ixat ion when the popula t ion is growing in size 
than  when it is decreasing in size (compare for in- 
s tance m = 2 0 ,  0r = t.01, f l =  t .0 with m ~  20, 

= 0.96, fl = 0.95). 
The results of our model  rest on the assumpt ion  of 

a Poisson progeny  distr ibut ion per individual.  Very  
little empirical  evidence is known to  suppor t  or 
refute  this assumption.  One other  dis t r ibut ion tha t  
is sometimes assumed for an offspring dis tr ibut ion 
is the negat ive binomial.  In  a h u m a n  popula t ion 
f rom the U.S. Census data,  1950, Koj ima  and Kel- 
leher (1962) found a good fit of a negative binomial  
to the dis tr ibut ion of offspring per family. The vari- 
ance of the dis t r ibut ion was found to be twice its 
mean.  

On the basis t ha t  a negat ive binomial  might  pre- 
sent at t imes an al ternat ive to the Poisson distri- 
but ion  we though t  t ha t  it would be of interest to  
examine the effects on our results when a negat ive 
binomial  p rogeny  dis tr ibut ion per individual  is 

assumed. F r o m  (7.4) the u l t imate  
probabi l i ty  of survival  of a mu-  
t an t  gene in a popula t ion  of in- 
finite size when the  offspring 
dis t r ibut ion is a negat ive bi- 
nomial  

( - r )  r ~ 
( P ( X = i )  = j P ( - - q ) ,  

i - - o ,  1 . . . .  ) 

with a = r q/p and (# = r q/p2 
is 

where p (0 < p < t) is a pa ramete r  of the distri- 
bution.  F r o m  (7.4) and (7.5) the rat io of the  ulti- 
ma te  probabi l i ty  of f ixat ion of a Poisson to t h a t  of 
a negative binomial  is t /p .  This rat io approaches  1 
as p ~ t and approaches oe as p- ->  o. W h e n  the 
variance exceeds the mean  the u l t imate  probabi l i ty  
of f ixation decreases f rom tha t  of a Poisson. Wi th  
a var iance equal to  twice the mean  (p = 1/2 for 
example) the u l t imate  probabi l i ty  of f ixation is ex- 
pected to be t /2  t h a t  of a Poisson. In  finite popula-  
tions, however,  the  difference between a Poisson and 
a negative binomial  is not  expected to be as great  
because of drift. 

In  order to s tudy  the effects a negat ive binomial  
p rogeny  distr ibut ion might  have on the u l t imate  
probabi l i ty  of f ixat ion and on the t ime to f ixat ion 
in a finite populat ion,  a s imulat ion s tudy  was done. 
The s imulat ion techniques were as described b y  Cook 
and Nassar  (t972). A negative binomial  dis tr ibut ion 
was assumed with a variance equal to twice the 
mean (p = t/2). Two cases were considered:  t .  ~ = 
= f l = - r q / p  = t and 2. a = r  l q / p  = 1.02, f l =  
= r, q/p = t.0. In  bo th  cases the initial popula t ion  
size was t0  with k = 1. Individuals  were assumed 
to reproduce independent ly .  The da ta  of Table  3, 
based on t80 replications for case I and 300 repli- 
cations for case 2 show tha t  for a neutra l  m u t a n t  
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gene (a = fl ---- 1) the re  was no difference in resul ts  
be tween  a Poisson or a nega t ive  b inomia l  p roge ny  
d i s t r ibu t ion .  F o r  a gene wi th  a se lect ive  a dva n t a ge ,  
however ,  (a =- t .02 , / / - - - -  t)  the  t ime  to f ixa t ion  was 
n o t i c e a b l y  r educed  f rom t h a t  of a Poisson.  

The  a s sumpt ion  in our  mode l  of i ndependence  in 
r ep roduc t ion  a m o n g  di f ferent  i nd iv idua l s  is no t  ex- 
pec ted  to  be t rue  for some popu la t ions .  The  assump-  
t ion will  p a r t i c u l a r l y  fai l  where  a p o p u l a t i o n  has  
r eached  i ts  l imi t  of g rowth  (set for th  b y  l imi t ing  
resources) and  where  compe t i t i on  among  ind iv idua l s  
is l ike ly  to  be present .  I t  is i m p o r t a n t  to  note ,  how-  
ever,  t h a t  when the  in i t i a l  popu l a t i on  size is small ,  
the  subs t i t u t i on  of a gene can be comple t ed  before  
the  popu la t i on  reaches  i ts  l imi t  of g rowth  and  hence 
when i t  is st i l l  l ike ly  t h a t  i nd iv idua l s  r ep roduce  in- 
d e p e n d e n t l y  of one ano ther .  The  a s s umpt ion  t h a t  
the  popu l a t i on  can grow in f in i t e ly  large (a consequence  
of the  Poisson d i s t r ibu t ion)  is p r o b a b l y  not  t rue  of 
m a n y  popu la t ions .  However ,  a s imu la t ion  s t u d y  
(Cook and  Nassa r  t972) of the  same mode l  where  the  
t r ans i t i on  p robab i l i t i e s  were a d j u s t e d  to exclude  the  
s t a tus  N t ~ 6 m (N t = popu la t i on  size a t  t ime  t) d id  
not  s ign i f i can t ly  a l t e r  our  conclusions.  The  as sump-  
t ion of a cons t an t  se lect ive  pressure  f rom genera t ion  
to genera t ion  migh t  be res t r i c t ive  when one considers  
t h a t  ce r ta in  popu la t ions  are known to f luc tua te  in 
epoch and  f rom genera t ion  to  genera t ion .  The  re lax-  
a t ion  of th is  a s sumpt ion  is dea l t  wi th  in a fu tu re  
paper .  
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