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Dynamics of Finite Populations

II. A Time-Homogeneous Stochastic Process Describing the Ultimate Probability of and the
Expected Time to Fixation or Loss of an Allele or Type in a Population of Variable Size!

R. F. NASSAR and R. D. COOK

Department of Statistics, Kansas State University, Manhattan, Kansas (USA) and School of Statistics,
: University of Minnesota, St. Paul, Minnesota (USA) f

Summary. A time-homogeneous stochastic process was used to derive exact expressions for the ultimate probability
of fixation or loss and the expected time to fixation or loss of an allele in a haploid population whose size is a Poisson
random variable. The treatment included selection and multiple alleles.

1. Introduction

Genetic theories of finite populations have been
developed dealing with the rate and probability of
fixation of an allele and with its time to fixation
(Kimura 1957, 1970, Felsenstein 1971, Watterson
1959, Carr and Nassar 1970). The limiting assump-
tion in these studies is that of a constant population
size. Ecological evidence shows that some popula-
tions vary in size over time (Andrewartha and Birch,
1954}, hence in the study of the dynamics of gene
frequencies in finite populations it is desirable to for-
mulate models with variable population size. Karlin
(1968) studied the rate of approach to homozygosity
for a selectively neutral gene in finite stochastic
models of variable population size. Cook and Nassar
(1972), using independent branching processes, stu-
died the time to fixation and the probability of sur-
vival of a selectively neutral gene in a finite popula-
tion with a Poisson progeny distribution. There have
been previous studies of the survival of a gene using
independent branching processes having a Poisson
progeny distribution. However, all of these studies
were limited to populations of infinite size (Fisher
1930, Pollak 1966, Ohta and Kojima 1968, and others).

In this study we investigate in a finite haploid
population of variable size with a Poisson progeny
distribution the time to fixation and the probability
of survival of a gene under selection.

2. The Model

Consider a population of #, haploid individuals of
which &, are of type 4, and n, — k, of type A,.
Assume that individuals reproduce independently of
one another and generations discrete and that each
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individual has a progeny distribution that is Poisson
with parameter « in type 4, and § in type 4,. With
that, the

Pr (an individual of type 4, has » offspring) =

e—% gt

——, n=0,1,2..., (2.1)
Pr (an individual of type A4, has # offspring) =

—B gn
—e’n!ﬂ—, n=0,1,2... (2.2)

for somea > 0, § > 0. The distribution of the popu-
lation size of type A, in the next generation is the
distribution of the sum of %k, independent random
variables each having the Poisson density (2.1). Also
the distribution of the population size of type A4, is
the distribution of the sum of (n, — k,) independent
random variables each having the Poisson density
(2.2). The joint distribution of the population size
of types 4, and 4, in the next generation is then the
product of the 4, and A4, distributions.

The probability in the next generation of having
k, individuals of type 4, and (#; — k) individuals of
type A, given kg and ny — ko in the present generation
is

Pr (K; = ky, Ny = m| Ky = ky ,Ny = ng) =

. E*kua‘(ko a)kl e—{(na—ko)B ((’}’Lo — ko) ﬂ)"r"h
=R (n, — Fep)! - (23)

The stochastic process as described has a set of ab-
sorbing states (A)

A={X,N))X=00orN,N=0,1,2,...}
and a set of transient states (7)
T = {{X, N)|]o < X <N, X and N integers} .

Assuming that the above process is time-homoge-
neous, the one step transition probability is represent-
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ed as

. ka)t ((m — k) B)i—i
P((k, m), (G, 7)) = e—ha—(m—k)p iT) (( o )z')ﬁ!)
O0<hk<<mo<i<y. (2.4)
When « # B there is selection acting in terms of
differential reproduction of the two types.

’

3. Probability of Being in a Transient State
Let

Xt m) = £ Pk, G (e T
(4,f)eT A
Xty m) = ¥ P(ls ), G, ) X1, ) 61
and

Xk m) = X P(km), (s ) X, )

(4,7)eT

n>2and (k,m)e T
X"k, m) is the probability that, starting from the
transient state (%, m), the process remains in T for

the next # transitions. Substituting (2.4) into (3.1)
and using induction, we can show that

Xn(k, m) =1 — ¢t -+ e kon—(m—R)fn __ g‘*(m—k)ﬁn;

n=12... (3.2)
where
o =a >0 and B =8>0
oc'z =a {1l —e™ /32 =B —eh) 53)
oc;, =a (1 — e %) Bo=p0 (1 —ePur).

The sequences {«,} and {f},} are decreasing sequences
which have a limit of zero if 0 <o <1 and 0 < g <
< 1. The limits are finite (L, > 0, Lg > 0) ifx > 1,
f > 1. In the latter case L, and Lg are the positive
roots of L, =a (1 —¢1s) and Lg=F (1 — e~ 15)
respectively as shown by Cook and Nassar, 1972.
Considering the limits of {x,} and {f,} it is easy to
see that

lim X*(k, m} = 0 for & andfor g <1

7—>00

=L foraxandf>1.

In words, if the average number of progeny per in-
dividual of either or both types is equal to or less
than 1, then with probability 1 a type will be even-
tually fixed or lost from the population. If the aver-
age progeny number of an individual in both types
is larger than 1, there is a positive probability that
both types remain indefinitely in the population.
The above remarks can also be deduced from stan-
dard branching process theory.

4. Ultimate Probability of Fixation or Loss

In this section we inquire into the ultimate prob-
ability that a type is fixed or lost from a population.
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Let

(k. m) = 5 P({k, m), )

Dk, m) :,zjz :: P((k, m), (i, ) D) | (4)
D{k, m) = i%mww<nww(>

where D"(k, jm) is the probability that the process
is absorbed into the class D = {(n, n)jn =1, 2, ...}
in the nth transition given the initial transient state
(B, m).

Substituting (2.4) into (4.1) and using the induc-
tion argument, we can show that

D™k, m) = ¢=m—RIn — g—han—(m—R)n .

4R n—RBp g — =Ry s> 1. (4.2)
The ultimate probability of fixation is
D(k, m) = 3} D™k, m) =1 — e-ka—m—RF L
n=1
+ g’ (g—k"‘n—(m"k)ﬂn—x —_— g"kan“('n—k)ﬁn) (43)
fo<g<1or
D(k, 77’&) — 6——(m-k)Lﬂ . 6~ka-—(m—k)ﬁ +
..}. 20' (g"k"'n"('"—k)ﬁnﬂ. — g"k"‘n—(m“k)ﬂn) (44)
n=2

if f>1.
The ultimate probability that type 4, is lost from
the population is

1 — D(k, m) = G(k, m)
where
G = {(0,n)|n=01,2,...}.

This includes the situation where loss is also due to
population extinction.
It can be shown that

oo
G(k, m) =1 + 2‘ g—k"‘n—xg(m_k)ﬁn—x —_— e—ka‘n—'(M—k)ﬂn—x

n=2
(4.5)
ifo <a<1or
Gk, m) = e~kla 4 57 gk (n—h)fas —
n=2
— g Rau—m—R)fas (4.6)

if o > 1.
The probability of ultimate loss, excluding the case
of population extinction, can be derived as follows:
Let

Clem) = 3 Plkm), 0.)  (47)
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and
1

P((k, m), (i, 1)) C*7(3, 1)

1

-,

CMk, m) =

g

%

H
again substituting (2.4) into (4.7) we can show by
induction that

C"(k, ’WL) — g~kan —_ ‘gwkmn_l — 6vkan—(m—k)ﬂ,, +

+ e—k“n-l—(m—k)ﬁn

the ultimate probability of loss, excluding extinction,
is

Clk, m) = X C*(k, m) =1 — ¢~ho—tn—RB 1
n=1

_+.. 2‘0 6'k0‘n*1_(m_k)/3n — e_k"‘n-‘(m"k)ﬂn (4‘8)
n=2
if 0 <o <1. Ha>1, e *areplaces 1 in (4.8).

5. Expected Time to Fixation or Loss

Let E(%, m) denote the expected time to absorption
given that the process began in the transient state
(k, m). Then

Ewmzém%m+mwm (5.1)

following the same argument we presented previously
(Cook and Nassar, 1972) we can show that

[e9]

E(k’ 1/”) =1 + Z‘ 1 _I_ g—k"‘n—(m"k)ﬂn — g—ko‘n —
n=2

— g_(m_k)fjn .

(5.2)

The series in (5.2) diverges only when « > 1 and
f > 1; otherwise it converges. E(k, ) is not defined
for [o > 1, > 1], the case where the probability
of ultimate absorption is less than 1. E(k, m) is
finite where the probability of ultimate absorption
of the stochastic process is 1. We can also define
E’(k, m) as the expected time to fixation or loss of an
allele given that the population does not go to extinc-
tion.

EWM:§W%W+WWMM%M+

+ D(k, m))). (5.3)

The expected time to loss of type A,, given that loss
occurs, 1is:

Eqlk, m) = £ w(G(h, m)[Glk,m) (5.4
or
Eifh, m) = X n(C'(k, m)IClh, ) (5.5)
similarly, for fixatiOI:-
Ey= X w0 (ko )/D(f, m) (5.6)
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6. r Types

The results of the previous sections can be extended
to include a population with 7 types of individuals.
The one step transition probability is then

P((iy, gy -+ oy bpet, M), (1 s - 0 Jre1, @) =
r 7 . .
= exp(~ 2 z'kock) i (6-1)
k=1 k=1 Jk*
where
r—1 r—1
y=m— Y §,=9¢— 31
k=1 k=1
and

&, = the average progeny number per individual of
type &.

Ultimate Probability of Absorption

Let X"(¢y, 4, . . ., ¢,—1, m) == probability that start-
ing from the transient state (i, 7, ..., 7,4, m} at
least two types will still be present in the population
in the next n generations. The process is defined to
be transient if at least two types are present in the
population. Analogous to the previous presentation
of Section 3, we can show that

XMty gy oo oy Gy, m) =1 — X €xp (— P ikock,n)+
=t o
+ {r — 1) exp (—kZ’ ikock,,,) , (6.2)
=1
where
Kp,t =— Ky
&p2 =0y (1 — €70Y) {6.3)

Gpyw = 0 (1 — €7hon=1)

As expected, at least » — 1 of the {x;} sequences
must be equal to zero in the limit if absorption is to
occur with probability 1. This implies that r — 1
of the types must have an average progeny number
per individual («;) equal to or less than one.

Ultimate Probability of Fixation
Let D%(sy, 4y, . . ., 1,1, m) = the probability that
the kth type (R =1, 2,...,7) is fixed in the popu-

lation at the nth generation or transition, given the
initial transient state (i;, %5, . . ., 4,4, m).

o0
Dyliy g0 - - o dyr, 1) = X D2y, iy, . . ., dy_y, 1) =
n=1

= the ultimate probability of fixation of type &.
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Analogous to section 4 we can show that

L4
Dy(iy, 1, - -+, By—y, M) = €Xp I:— b ijoc,-,n]
i=1

j#k

— exp [— X i,-cx,',n} — exp [—— P i,-cx,-,n_1]
i=1 F=1

j#k

+ exp [—4008,4) €XP [— X iioc,-,,,_i]. (6.4)
i

Under the present theory it is possible to define and
compute several forms of loss of a gene. A gene, for
example, can be lost when all others are still segre-
gating. It is only when the population is ultimately
monomorphic with probability one that the ultimate
probability of loss can be computed as one minus the
ultimate probability of fixation, (6.4). No other
definitions of loss will be considered here.

Other expressions analogous to those of Sections 4
and 5 for 7 types in the population can be written in
terms of (6.2) and (6.4). For example, the expected
time until the population becomes monomorphic can
be written as

14+ 3 XMiy, tgy o« oy Tn_r, 1) .
n=2
Other analogies are also straightforward.

7. Discussion

Fisher (1930) was the first to study the probability
of survival of an individual gene in a population of
infinite size. Assuming a Poisson progeny distri-
bution he calculated the probability of survival at
generation n and in the limit for a gene that is neutral
and with a 1%, selective advantage. In our formula-
tion the probability of survival at generation n is

Xk, m) + X D'k, m) , (7.1)

i=1

where the first term represents the probability at
time n that the gene is still segregating in the popu-
lation and the second term the probability that it
is fixed. Our approach reduces to that of Fisher
when the population sizeis infinite. This is shown as
follows: Taking the limit of (7.1) as m — 00 one gets

Lim [X"(k, m) + 3 DIk, m)] — | — ok
m-rco j=1
For a single mutant
Xn(1: m) =] — g% =14 — e-a(i—e*“n—l) —
E=S 1 —_— g—"‘X""(l,oo)

(7.2)

which is essentially Fisher’s recursive relationship for
the probability of survival to generation #. The ulti-
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mate probability of survival, X*(1, o), is

im X™(1,00) = lim (1 — e—aX”"(i,oo))l

(7.3)
|

Xoo(1’ OO) =1 — e—»aX“’(i,oo) .

An approximate solution to equation (7.3) when
« — 1 is small and positive can be deduced from
Bartlett (1966, page 43) as

X*(1,00) = 1 — ¢-26-ie*

= 2(x —1)/oc for a Poisson

(7.4)

which is equal to 0.0197 when & = 1.01 (Table 1).
The ultimate probability of survival of a single gene
in a finite population is seen to be larger than that
of a large population. The increase is due to an in-
crease in the probability of fixation of the gene as
a result of random genetic drift due to small popula-
tion size.

Kimura and Ohta (1969) calculated that the time
to fixation (excluding loss) of a neutral mutant gene
in a diploid random mating population of constant
size N, is approximately equal to 4 N,. They also
reported on the time to loss (excluding fixation) for
several population sizes. Although our results are
strictly applicable to a haploid model, it is interesting
to note that the time to fixation or loss (from equa-
tions 5.5 and 5.6) of a neutral mutant gene in
a haploid population of stable size (x = f§ =1} is
approximately the same as that in a random mating
diploid population whose number of gametes (2 N,)
is equal to the mean (m) of the haploid population
(Table 2). In all cases, however, results of the haploid
case were slightly less than the corresponding results
of the diploid case. The correspondence of the haploid
and diploid results ceases when the haploid popula-
tion is no longer stable in size. If gene substitution
occurs when the population is decreasing in size
(x = B = 0.95), then there is a decrease in the time
to fixation or loss of the gene as compared to that of
the stable size. An increase in the time to fixation
is observed, however, if the population is increasing
in size during gene substitution (6« = 1.01, § = 1.0).

Table 1. The probability of swrvival of a mutant gene with
a one percent selective advantage (6 = 1.01, = 1) in a po-
pulation of initial size 100 and infinity

Gene- Probability gene Probability gene Probability
ration is segregating is fixed of survival
m = 100 m = 100 m = 0o
1 0.63578 0.0 0.6358
3 0.38033 0.0 0.3803
7 0.21749 0.0 0.2175
15 0.12169 0.92%x107¢ 0.1217
3 0.06854 0.19x 1073 0.0687
63 0.03889 0.24x107% 0.0409
127 0.02125 0.007807 0.0271
limit 0.0 0.02414 0.0197
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Table 2. The expected time to fixation and to loss and the ultimate probability of fixation of a mutant gene

Parameter Population size Time to loss Time to Ultimate
haploid diploid haploid diploid fixation prob. of

B & m 2N (Kimura ’60) fixation
1 1 20 20 5.69 6.3 37.97 0.0488
1 1 60 60 7.69 8.2 117.01

-1 1 100 100 8.61 9.3 192.04
0.95 0.95 60 4.42 31.01
0.95 0.95 20 3.78 16.66 0.0476
0.95 0.96 20 3.84 17.42 0.0532
0.95 1.0 20 3.97 21.23 0.0832
0.8 0.81 20 2.45 7.93 0.0472
0.8 0.85 20 2.54 8.36 0.0625
1 1.01 20 5.36 94.68 0.06

Table 3. Comparison of theovetical (Poisson case) and Monte Carlo (negative
binomial case) results for the time to fixation and to loss and for the probability
of fixation of a neutral mutant gene in a population of initial size 10

assumed. From (7.4) the ultimate
probability of survival of a mu-
tant gene in a population of in-

Progeny distribution Time to fixation

a=f=1

Poisson 18.19 4.54
negative binomial 16.78 4 4.4 4.34 4 0.56
a=1.02, g =1

Poisson 47.22 4.20
negative binomial 32.57 4 8.59 4.18 + 0.44

Time to loss

finite size when the offspring

When the size of the population is constant, it is
known that the time to fixation of a mutant gene
decreases with an increase in its selective advantage.
If the population is growing in size, however, the
time to fixation is seen to increase with an increase in
its selective advantage. This is also true when the
population is growing in size for the first few gene-
rations and then stabilizes (unpublished work). The
results of Table 2 show also that a mutant gene with
a selective advantage has a higher ultimate probabi-
lity of fixation when the population is growing in size
than when it is decreasing in size {compare for in-
stance m = 20, & = 1.01, f = 1.0 with m = 20,
o = 0.96, § = 0.95).

The results of our model rest on the assumption of
a Poisson progeny distribution per individual. Very
little empirical evidence is known to support or
refute this assumption. One other distribution that
is sometimes assumed for an offspring distribution
is the negative binomial. In a human population
from the U.S. Census data, 1950, Kojima and Kel-
leher (1962) found a good fit of a negative binomial
to the distribution of offspring per family. The vari-
ance of the distribution was found to be twice its
mean.

On the basis that a negative binomial might pre-
sent at times an alternative to the Poisson distri-
bution we thought that it would be of interest to
examine the effects on our results when a negative
binomial progeny distribution per individual is
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Probability R - ; . ;
of fixation distribution is a negative bi-
~— nomial

0.1 AN Bt 4 WFPTRRRPRY |
0.101 + 0.022 (P(X_7)*(j)p( 9"
0.116 7=014,...)
0-104 + 0.015 with &« = 7 ¢/p and of = 7 g[p?

is

1
2 (1 —7) P - (7.5)

where p (0 < p < 1) is a parameter of the distri-
bution. From (7.4) and (7.5) the ratio of the ulti-
mate probability of fixation of a Poisson to that of
a negative binomial is 1/p. This ratio approaches 1
as p -1 and approaches co as p —0. When the
variance exceeds the mean the ultimate probability
of fixation decreases from that of a Poisson. With
a variance equal to twice the mean (p = 1/2 for
example) the ultimate probability of fixation is ex-
pected to be 1/2 that of a Poisson. In finite popula-
tions, however, the difference between a Poisson and
a negative binomial is not expected to be as great
because of drift.

In order to study the effects a negative binomial
progeny distribution might have on the ultimate
probability of fixation and on the time to fixation
in a finite population, a simulation study was done.
The simulation techniques were as described by Cook
and Nassar (1972). A negative binomial distribution
was assumed with a variance equal to twice the
mean (p = 1/2). Two cases were considered: 1. « =
=fB=rqlp=1 and 2. x =r¢q/p =102, f=
= 7, ¢/p = 1.0. In both cases the initial population
size was 10 with & = 1. Individuals were assumed
to reproduce independently. The data of Table 3,
based on 180 replications for case 1 and 300 repli-
cations for case 2 show that for a neutral mutant
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gene (x = 8 = 1) there was no difference in results
between a Poisson or a negative binomial progeny
distribution. For a gene with a selective advantage,
however, (x = 1.02, # = 1) the time to fixation was
noticeably reduced from that of a Poisson.

The assumption in our model of independence in
reproduction among different individuals is not ex-
pected to be true for some populations. The assump-
tion will particularly fail where a population has
reached its limit of growth (set forth by limiting
resources) and where competition among individuals
is likely to be present. It is important to note, how-
ever, that when the initial population size is small,
the substitution of a gene can be completed before
the population reaches its limit of growth and hence
when it is still likely that individuals reproduce in-
dependently of one another. The assumption that
the population can grow infinitely large (a consequence
of the Poisson distribution) is probably not true of
many populations. However, a simulation study
(Cook and Nassar 1972) of the same model where the
transition probabilities were adjusted to exclude the
status N, > 6 m (N, = population size at time #) did
not significantly alter our conclusions. The assump-
tion of a constant selective pressure from generation
to generation might be restrictive when one considers
that certain populations are known to fluctuate in
epoch and from generation to generation. The relax-
ation of this assumption is dealt with in a future

paper.
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